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A vital requirement for a quantum computer is the ability to locally address, with high fidelity, any of its qubits
without affecting their neighbors. We propose an addressing method using composite sequences of laser pulses that
dramatically reduces the addressing error in a lattice of closely spaced atoms or ions and at the same time signifi-
cantly enhances the robustness of qubit manipulations. To this end, we design novel (to our knowledge) high-
fidelity composite pulses for the most important single-qubit operations. In principle, this method allows one
to beat the diffraction limit, for only atoms situated in a small spatial region around the center of the laser beam
are excited, well within the laser beam waist. © 2011 Optical Society of America
OCIS codes: 020.1670, 270.1670, 270.5585, 300.3700.

Scalable quantum computers depend critically on the
ability to perform local addressing of their individual
qubits [1]. In a Paul ion trap, which is one of the most
promising scalable platforms for the future quantum
computer [2], local addressing is the ability to operate
on a single ion using focused laser light while keeping
the neighboring ions unaffected. When the number of
ions increases, the distance between them diminishes,
and local addressing becomes one of the principal
experimental challenges. For example, in a recent experi-
mental demonstration of the Toffoli gate [3], most of the
error was attributed to addressing error, as the neighbor-
ing ions were seeing 7% of the central Rabi frequency.
In this Letter, we propose a method for high-fidelity

local addressing applicable to various types of atomic
qubits: trapped ions, atoms in optical lattices, quantum
dots, etc. To this end, we present new narrowband (NB)
and passband (PB) composite pulses [4] that are spe-
cially designed for local addressing. The excitation
profiles of such pulses allow one to manipulate only a
single qubit, as the outer parts of the spatial laser beam
profile practically do not excite its neighbors, although
the latter may be subjected to significant laser intensity.
Moreover, with a PB pulse one enhances the robustness
of qubit manipulations, thereby eliminating errors due to
imperfectly calibrated and fluctuating laser intensity and
laser beam pointing instability.
The technique of composite pulses was introduced in

nuclear magnetic resonance (NMR) [5–11] as a powerful
tool for manipulation of spins by magnetic fields. A
composite pulse compensates the imperfections of a sin-
gle pulse, which is the traditional tool used to drive a
quantum transition, and it consists of a sequence of
pulses, each with a well-defined phase. The composite
phases are determined from the conditions imposed
on the desired overall excitation profile. In particular,
in an NB composite pulse only the qubits seeing pulse
areas within a narrow range around some value A are
subjected to transformation, while qubits seeing areas

outside this range remain unaffected in the end of the
composite sequence.

Most known composite pulses, however, are inap-
propriate for local addressing due to the sidebands
and the slowly vanishing tails in their excitation profiles.
The few composite pulses that allow local addressing
[12] are very sensitive to variations in the pulse area.
We present here a systematic method that allows us to
construct high-fidelity composite pulses, which eliminate
these drawbacks and which can be made robust and
accurate to any desired order.

A two-state quantum system ψ1↔ψ2, subjected to an
external coherent electromagnetic field, obeys the
Schrödinger equation, iℏ∂tcðtÞ ¼ HðtÞcðtÞ. Here the
vector cðtÞ ¼ ½c1ðtÞ; c2ðtÞ�T contains the two proba-
bility amplitudes, and the Hamiltonian is HðtÞ ¼
ðℏ=2ÞΩðtÞe−iDðtÞjψ1ihψ2j þ h:c:, with DðtÞ ¼ R

t
ti
Δðt0Þdt0,

where Δ ¼ ω0 − ω is the detuning between the laser
carrier frequency ω and the Bohr transition frequency
ω0, and ΩðtÞ is the Rabi frequency. The amplitudes at
the end of the interaction cðtf Þ are obtained from the
initial ones with the propagator U: cðtf Þ ¼ Uðtf ; tiÞcðtiÞ,
which can be parameterized with the complex Cayley–
Klein parameters a and b (obeying jaj2 þ jbj2 ¼ 1),

U ¼
�

a b
−b� a�

�
: ð1Þ

For resonance (Δ ¼ 0), the Schrödinger equation has an
exact solution regardless of the shape of ΩðtÞ, and the
parameters a and b are determined only by the pulse area
A ¼ R tf

ti ΩðtÞdt: a ¼ cosðA=2Þ, b ¼ −i sinðA=2Þ. The transi-
tion probability is p ¼ jbj2 ¼ sin2ðA=2Þ. A constant phase
shift ϕ in the driving field, ΩðtÞ → ΩðtÞeiϕ, is mapped onto
the propagator as

Uϕ ¼
�

a be−iϕ

−b�eiϕ a�

�
: ð2Þ
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We assume for simplicity, and possibly experimental
convenience, that all pulse areas are equal [13]. A se-
quence of N pulses Aϕk

, each with area A and phase
ϕk, produces the propagator

UðNÞ ¼ UðAϕN
ÞUðAϕN−1

Þ � � �UðAϕ1
Þ: ð3Þ

We consider here an odd number of pulses, N ¼ 2nþ 1,
although this restriction is not essential. We consider
composite sequences, which are symmetric with respect
to reversal of pulses, i.e., the phases should obey ϕk ¼
ϕNþ1−k (k ¼ 1; 2;…; n); this “anagram” condition annuls
the imaginary part of the propagator element U ðNÞ

11 . Since
the overall phase of the sequence is irrelevant, and only
the relative phases of the pulses matter for the dynamics,
we set ϕ1 ¼ ϕN ¼ 0; hence we are left with n indepen-
dent phases, which are treated as free parameters. For
NB pulses we require transition probability p ≈ 0 for
pulse areas in the vicinity of A ¼ 0 (a flat bottom); for
PB pulses we also require p ≈ const around the desired
overall area A (a flat plateau). Thus, the phases for an
NB sequence are derived from the conditions

½U ðNÞ
11 �A¼A ¼ cosðA=2Þ; ð4aÞ

½∂kAU ðNÞ
11 �A¼0 ¼ 0 ðk ¼ 2; 4;…; 2n1Þ; ð4bÞ

with n1 ¼ n − 1 and ∂kA ≡ ∂k=∂Ak. For an n2-fold flat-top
PB sequence, we add the conditions

½∂kAU ðNÞ
11 �A¼A ¼ 0 ðk ¼ 1; 2;…; n2Þ; ð5Þ

with n1 þ n2 þ 1 ¼ n. For a sequence with a target phase
φ, we must also have

½argU ðNÞ
21 �A¼A ¼ φ: ð6Þ

This phase can be stabilized with PB pulses, for which

½arg ∂kAU ðNÞ
21 �A¼A ¼ 0 ðk ¼ 1; 2;…; n3Þ: ð7Þ

Thus a phase-stable PB sequence consists of n ¼
n1 þ n2 þ n3 þ 2 pulses. For target area A ¼ π, Eqs. (4a)
and (5) for even k and Eq. (7) for odd k are fulfilled
identically.
Using the method described above, we have con-

structed new NB and PB composite pulses; examples
are presented in Table 1 for the most often used areas.
Figure 1 illustrates the excitation profiles for different
composite pulses of target area π (left frames) and π=2
(right frames). At the center of the laser spot (origin),
the probability of excitation is p0 ¼ sin2ðA=2Þ, whereas
at the wings it naturally decreases. The logarithmic scale
allows us to examine the fidelity of the profile against the
10−4 quantum information benchmark [1]. We assume
that the laser beam is a spot with an FWHM of intensity
ξ=

ffiffiffi
2

p
; this implies an FWHM of Rabi frequency ξ for sin-

gle-photon transitions. Remarkably, suppression of un-
wanted neighbor excitation below the 10−4 benchmark
is achieved at up to 15% of the peak Rabi frequency (cor-

responding to distance 0:83ξ from the center of the spot)
with the N5 pulse, 27% (distance 0:70ξ) with P17, and 48%
(distance 0:51ξ) with N21. In this manner we can beat the
diffraction limit, as the excitation is localized in a spatial
range that, with a sufficient number of ingredient pulses,

Fig. 1. (Color online) Top frames: excitation probability p in a
laser field with a Gaussian spatial profile (gray shaded) with
FWHM of Rabi frequency ξ versus the distance from its center
for various composite pulses from Table 1:N5ðπÞ, P7ðπÞ,N21ðπÞ,
and P17ðπÞ (left) andN7ðπ=2Þ, P9ðπ=2Þ, and P17ðπ=2Þ (right). The
excitation profiles of single π and π=2 pulses are shown too.
Bottom frames: deviation p0 − p, with p0 ¼ 1 (left) and p0 ¼
0:5 (right) being the desired excitation probability.

Table 1. Phases ϕk (in Units π) for Some NB (NN) and PB

(PN) Sequences of N � 2n� 1 Phased Resonant Pulses of

Area A: A0Aϕ2
Aϕ3

� � �Aϕn�1
� � �Aϕ3

Aϕ2
A0

a

Narrowband Sequences

N2nþ1ðAÞ Phases (ϕ2;ϕ3;ϕ4;…;ϕnþ1)

N5ðπÞ (0.839; 1.420)
N9ðπÞ (0.426; 1.490; 0.858; 1.300)
N13ðπÞ (1.103; 0.876; 0.154; 1.708; 1.020; 0.229)
N21ðπÞ (1.073; 0.919; 0.131; 1.831; 1.156; 0.721; 0.096; 1.521;

0.812; 1.954)
N7ðπ2Þ (0.471; 1.196; 1.315)
N7ð πffiffi

2
p Þ (0.577; 1.161; 1.573)

N7ð π
2

ffiffi
2

p Þ (1.532; 0.800; 0.698)

N7ð
ffiffiffi
2

p
πÞ (1.505; 0.823; 0.609)

Passband Sequences

P2nþ1ðAÞ Phases (ϕ2;ϕ3;ϕ4;…;ϕnþ1)

P7ðπÞ (0.508; 1.337; 1.083)
P17ðπÞ (1.235; 0.721; 0.934; 0.126; 1.872; 1.515; 0.873; 0.217)
P9ðπ2Þ (1.270; 1.106; 0.464; 0.053)
P17ðπ2Þ (0.459; 0.097; 0.302; 1.445; 0.829; 1.324; 1.290; 0.995)
P9ð πffiffi

2
p Þ (0.676; 0.87; 1.503; 1.836)

P9ð π
2

ffiffi
2

p Þ (0.356; 1.517; 0.957; 1.023)

P9ð
ffiffiffi
2

p
πÞ (1.909; 1.197; 0.861; 0.660)

aWe set n1 ¼ n, n2 ¼ 0 for all NB pulses N2nþ1ðAÞ; n1 ¼ 2, n2 ¼ 1 for
P7ðAÞ and P9ðAÞ; n1 ¼ 6, n2 ¼ 3 for P17ðπÞ; n1 ¼ 4, n2 ¼ 3 for P17ðπ=2Þ.
For all sequences we set n3 ¼ 0. ForA ≠ π we also impose Eq. (4a). The
pulse area is A ¼ π for N5ðπÞ, N9ðπÞ, N13ðπÞ, N21ðπÞ, P7ðπÞ, and P17ðπÞ;
A ¼ 3π=7, π=2, 3π=8, and 3π=4 for N7ðπ=2Þ, N7ðπ=

ffiffiffi
2

p Þ, N7ðπ=2
ffiffiffi
2

p Þ, and
N7ð

ffiffiffi
2

p
πÞ, respectively; A ¼ 2π=3 for P17ðπ=2Þ; A ¼ 3π=5 for P9ðπ=2Þ,

P9ðπ=
ffiffiffi
2

p Þ, P9ðπ=2
ffiffiffi
2

p Þ, and P9ð
ffiffiffi
2

p
πÞ.
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can be made smaller than the beam waist. The physical
reason for this suppression is the destructive interfer-
ence of the ingredient pulses in the composite sequence.
The bottom frames of Fig. 1 show the infidelity of the

target qubit itself and reveal that PB composite pulses
can greatly enhance the robustness of manipulation of
the target qubit without losing selectivity. For target area
A ¼ π (left frame), an infidelity of 10−4 is encountered at
offset 0:05ξ for a single pulse, while the admissible offset
reaches 0:18ξ for P7ðπÞ and 0:21ξ for P17ðπÞ.
Our scheme can be further exploited, in conjunction

with Eqs. (6) and (7), to generate various NB and PB
sequences of specified target phases φ at the expense
of additional pulses. Table 2 lists a set of composite
sequences that produce experimentally relevant phased
rotations. Larger sequences achieve stabilization of the
phase φ. Figure 2 illustrates the robustness of the com-
posite phase φ ¼ 3π=2 [3] produced by two of our phase-
stabilized sequences from Table 2. Remarkably, one
can perform high-fidelity local addressing even with a

pulse area deviation of 20%. In addition, we have found
that pulse area noise with relative amplitude 5%
introduces an absolute error in the target phase
of 2:5 × 10−3π.

To conclude, the new composite sequences designed
for high-fidelity local addressing in a lattice of closely
spaced qubits are of potential application to Paul ion
traps [12,14–16] and ultracold atoms in optical lattices
[17–19]. They allow one to stabilize both the rotation
angle and the phase of the desired qubit rotation. This
technique can be adapted to addressing on the vibra-
tional sidebands, which should allow one to construct
high-fidelity two-qubit operations.

This work has been supported by the European Com-
mission project FASTQUAST and the Bulgarian National
Science Fund grants VU-I-301/07, D002-90/08, and
DMU02-19/09.
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Fig. 2. (Color online) Phase deviation jϕ − 3π=2j versus pulse
area deviation of the composite pulses N7ðπ; 3π2 Þ and P11ðπ; 3π2 Þ,
shown in Table 2. The dashed curves are for frequency mis-
match Δ ¼ 0:001=T . The horizontal line is the threshold above
which the infidelity exceeds 10−4.

Table 2. Phases ϕk (in Units π) for Some NB

(NN�A;φ�) and PB (PN�A;φ�) Sequences of

N � 2n� 1 Phased Resonant Pulses of Area A:
A0Aϕ2

Aϕ3
� � �Aϕn�1

� � �Aϕ3
Aϕ2

A0 That Produce

Phased Rotations of Angle φ at Area Aa

Sequences Phases (ϕ2;ϕ3;ϕ4;…;ϕnþ1)

N7ðπ; 3π2 Þ (1.256; 0.792; 0.072)
P11ðπ; 3π2 Þ (0.221; 1.109; 0.753; 1.304; 1.878)
N9ðπ2 ; π2Þ (1.074; 0.935; 0.173; 1.562)
P13ðπ2 ; π2Þ (0.959; 1.048; 0.367; 1.967; 1.511; 0.860)
N9ð πffiffi

2
p ; 3π2 Þ (1.326; 0.958; 0.137; 0.791)

P13ð πffiffi
2

p ; 3π2 Þ (0.183; 0.978; 1.421; 0.769; 1.924; 1.916)

aWe set n2 ¼ n3 ¼ 0 for all NB pulses N2nþ1ðA;φÞ. We have n2 ¼ 1,
n3 ¼ 4 for P11ðA;φÞ; n2 ¼ n3 ¼ 1 for P13ðA;φÞ. For all sequences we set
n1 ¼ 2, and we impose Eq. (6). For A ≠ π we also impose Eq. (4a). The
pulse area is A ¼ π for N7ðπ; 3π=2Þ and P11ðπ; 3π=2Þ; A ¼ 3π=4 for
N9ðπ=2; π=2Þ and P13ðπ=2; π=2Þ; A ¼ 3π=5 for N9ðπ=

ffiffiffi
2

p
; 3π=2Þ

and P13ðπ=
ffiffiffi
2

p
; 3π=2Þ.
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